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which are on degradable or unsafe. Nowadays, most of the agriculture 
depends on natural microorganisms instead of agrochemicals like fertilizer 
and pesticides to improving crop quality and quantity, thus there is a change 
in attitude of people towards growth promoting actinomycetes and many 
scientists diverted their attention towards the alternative natural agents 
which led to the development of bioagents and antagonistic microbes [11].

Actinobacteria are widely distributed in biotic sources like soil and water and 
live as saprophyte microbes, capable of decomposing lignin, chitin, pectin 
[12]. The induced chitinase produced from actinomycetes in the growth 
medium has the greatest ability for chitin hydrolysis which had pivotal roles 
in the bioconversion of chitin in the fungal cell walls, exoskeleton of insects 
and chitin wastes to soluble materials [13,14]. Numerous plant fungal diseases 
can be controlled by antagonistic Actinobacteria which poses eco-friendly 
relationship with plants due to the production of anti-pathogenic agents, 
competition for space and nutrients and/or enhancing the host defensive 
mechanism [15,16]. A number of bacteria have been identified as possible 
biocontrol agents due to the large number of secondary metabolites and the 
most important antagonistic bacteria belong to the genera of Streptomyces, 
Bacillus, Hypericum and Pseudomonas [17-19]. Also, some genera of fungi like 
Ulocladium and Trichoderma have the ability to control various bacterial and 
fungal diseases. The use of antagonistically important Streptomyces is rapidly 
increased due to the unique ability to produce secondary volatile or non-
volatile antimicrobial substances with broad spectrum biocontrol activity. 
Especially, most of these secondary metabolites can be used to control plant 
diseases [4] and have significant roles in the promotion of plant growth, 
establishment of plant defense means and induction of plant systemic 
resistance [10,11]. Verma et al., [20] isolated three Streptomyces species which 
promote plant growth regulators and inhibiting the growth of Alternaria. 
Also, Streptomyces sp. H3-2 inhibit the growth of seven phytopathogenic 
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The non-taxonomic term, actinomycetes are a big group of simple 
prokaryotic Gram-positive bacteria and represent a group of genera that 
improve plant growth as well they act as biocontrol agents for many plant 
pathogens. These filamentous bacteria secrete many secondary metabolites 
which act as plant growth promoters or alternative agents to different used 
fungicide. The aim of this study was isolation and molecular characterization 
of some plant growth promoting actinomycetes from cultivated soil. In 
this study, out of twenty actinomycete isolates obtained from soil on starch 
nitrate agar, 5 bacteria isolates showed highly growth on chitin agar and 
were highly producers for antimicrobial agents against Escherichia coli and/
or Fusarium oxisporium. All these isolates were characterized and identified 
using morphological, physiological and molecular methods. These isolates 

INTRODUCTION

Isolating microbes from diverse natural ecological units has led to new 
metabolites with structural diversity. Soil of Saudi Arabia have been less 

explored as ecological sites for the discovery of new bioactive compounds 
from soil microorganisms or from thermophilic bacteria which flourish at 
high temperatures and produce many important enzymes and metabolites, 
used to control different plant pathogens [1-3]. There are many plant diseases 
limited the sustainable development of many plants, thus efficient biological 
control of these pathogens by eco-friendly and active agents considered 
opportunities [4]. Certain fungi especially Fusarium can stay for more than 10 
years as dormant spores in the rhizosphere soil or on plants until they found 
their hosts where they proliferate inside the host and act as a source of new 
infection by the dispersal of fungal spores by wind, water, soil or insects [5]. 
The most dangerous plant diseases are plant wilt, leaf spot, anthracnose, rust, 
blight, scab, gall, damping off, rot of root and powdery mildew and fungal 
infection of leaves may harmfully affect the whole plant, which decrease crop 
production and quality, thus management process to biocontrol and prevent 
the spread and progress of these diseases have a good impacts on crop yield 
[6-8]. The virulence, incidence, and severity of many pathogens biocontrol 
management strategies depend on special types of microorganisms that can 
be adopted to remove or eradicate plant diseases are well studied [9].

Soil actinomycetes had many biotechnological applications in agriculture, 
medicine and food sectors. For rapidly growing world population and to 
maintain a healthy environment, it is of essence to biocontrol of dangerous 
plant fungal diseases to increase the production and quality of food, feed 
and fiber. Over the past centuries, the use of chemical based pesticides and/
or fertilizers is not recommended due to the unexpected hazards to the 
environmental and residual accumulation in human bodies [10]. Stringent 
laws and regulations must be applied to prevent the use of agrochemicals 



Khallaf, et al.

413 AGBIR Vol.39 No.1 January 2023

fungi in vitro with EC50 value of 8.83 µg/ml, while higher EC50 values were 
recorded by Jing et al., [21].

Recently, different kind of compounds with antimicrobial activity was 
extracted using different solvents like methanol and ethyl acetate. Extracts 
of Streptomyces sp. showed more effective antifungal activity [5] which inhibit 
fungal growth and spores germination and the treated colonial tops of F. 
oxysporum became swelling and the mycelia had abnormal morphology which 
may due to extensive cell wall degradation, membrane denaturation and 
disappearance of some cellular contents [22,23]. Analysis of Streptomyces 
extracts showed two phenolic compounds with antimicrobial agents [24]. 
Phenolic compounds, ester, alkane, and other hydrocarbon materials, 
extracted from bacteria had excellent inhibitory effect on many bacterial 
pathogens like S. aureus, E. coli, and S. mutans [25-27]. Also, Streptomyces sp. 
produced many compounds with strong biocontrol activity against Fusarium 
during fermentation which contained plant growth promoted agents or 
siderophores. This study aimed to the selection of some Actinobacteria with 
biocontrol activities against some phytopathogens.

MATERIALS AND METHODS

The fungal isolates were from the microbial culture collection, Faculty of 
Science, Jeddah, Saudi Arabia while the pathogenic bacterial isolates were 
obtained from King Fahd General Hospital, Jeddah City. The blood agar 
culture medium was used for growth of some pathogenic bacteria whereas 
Sabouraud Dextrose agar medium was used for fungal growth.

Chitin and colloidal chitin preparation

The exoskeletons of the shrimps were collected from Jeddah fish market, 
Kingdom of Saudi Arabia, washed several times, dried and at room 
temperature, cut to pieces and dried. Approximately 500 g of the dried 
shrimp shells were de-mineralized for 24 hr at room temperature in 5% HCl 
(v/v), washed with water and de-proteinized by 3% NaOH solution at 98°C 
for 4 hr. The obtained crude chitin was washed with water, dried at 50°C, 
powdered, sieved through 300 mesh sizes and was used to prepare colloidal 
chitin and chitin agar medium [28]. 

Sample's collection and bacteria isolation: The present investigation was 
carried out to isolate and identify filamentous bacteria from different soil 
samples collected from the rhizosphere region of some grown plants at two 
farms at Jeddah and Yanbu Al-Nakheel, Western region, Saudi Arabia. 
Randomly, ten different cultivated soil samples of 100 g each and 10 cm 
depth were collected in sterile plastic bags, dried and sieved. Actinomycetes 
isolation was carried out on plates of starch nitrate agar [29] and the 
inoculated plates were incubated for 5 days at 30°C. Actinomycete colonies 
were selected, purified and preserved on Starch nitrate agar medium at 4°C 
until used. All isolates were screened for antagonistic activity, growth on 
chitin agar and IAA production. 

Degradation of chitin on the solid medium: The All bacterial isolates were 
screened for chitinases production on Mineral chitin agar medium [30]. All 
inoculated plates were incubated 5 days at 30°C and the presence of clear 
zone around the growth, confirm positive results. The best growing bacteria 
were selected, named SHJ5, SHJ10, SHG13, SHG15 and SHG20 and their 
possible abilities to produce chitinase was confirmed in mineral chitin broth 
medium. 

Preculture preparation and growth in liquid medium: Each tested isolate 
was grown in 50 ml of starch nitrate broth medium in 250 ml Erlenmeyer 
flasks, incubated at 30°C and 100 rpm in orbital shaker incubator for 2 
days. After that, 2 ml (4 × 106 CFU/ ml) of the bacterial inoculums was used 
to inoculate each Erlenmeyer flask (capacity 250 ml) containing 50 of the 
fresh sterile mineral chitin broth medium and all flasks were incubated using 
shaking incubator (100 rpm and 30°C for 5 days). The cells were collected 
and the filtrate was used to measure chitinase production [31].

Chitinase assay: Chitinase activity was determined spectrophotometrically 
by estimating the amount of free reducing groups formed after colloidal 
chitin hydrolysis as described by Trachuk et al., [28]. The reaction mixture 
was composed of 0.5 ml of 1% colloidal chitin suspended in 0.1 M sodium 
acetate buffer (pH 5.5) and 0.3 ml of enzyme solution. After 10 min of 
incubation at 37°C, 0.75 ml of dinitrosalicylic acid reagent (10 g NaOH, 10 g 
3, 5 dinitrosalicylic acid, 2 g phenol, 0.5 g sodium sulfite and 200 g potassium 
sodium tartrate per 500 ml) was added to stop the reaction. The mixture was 

heated in a water bath for 10 min at 100°C, centrifuged at 8000 rpm at 4°C 
for 10 min and its absorbance was measured at 530 nm. N-acetylglucosamine 
standard curve was prepared and enzyme activity (U/ml) was calculated. Unit 
is the amount of enzyme that produces 1 µM of N-acetylglucosamine per a 
min at 37°C [28].

Quantification of plant growth regulators and phosphate solubilization by 
the selected bacterial isolate

All isolates were screened for IAA production in medium supplemented with 
2 mg/ml of L-tryptophan at a pH of 7.0. After growth, the filtered sterile 
supernatant was used for IAA extraction with ethyl acetate [32] and the 
quantity was recorded by measuring the absorbance at 530 nm [33] and the 
quantity of IAA produced by each bacterium was estimated from standard 
curve of IAA. Similarly, the amount of Gibberellic acid (GA3) produced was 
estimated from a standard curve prepared using gibberellic acid according 
to Holbrook et al., [34] and Ashkan et al., [35]. Also, the selected bacterial 
isolates were screened for phosphate solubilization using Pikovskaya’s 
medium which contained tricalcium phosphate and the mean diameter of 
the clear zone (mm) around the colony was measured [36].

Enzyme assay of ACC deaminase

From a stock solution of α-ketobutyrate (Sigma-Aldrich Co., Mumbai, 
India), different dilution ranging between 0.1 and 1.0 nmol in Tris–
HCl was prepared. To 200 µl of each dilution, 300 µl reagent (0.2 % of 
2,4-dinitrophenyl hydrazine, pH 8.5) was added and the color was developed 
by the addition of 2 ml of 2 M NaOH. ACC deaminase activity was measured 
in bacterial cells after growth minimal medium (g/l: 4 NaPO

4
, 0.6 NaH

2
PO

4
, 

0.2 MgSO
4
.7H

2
O, FeSO

4
, 2 gluconic acid, 2.0 glucose and 2.0 citric acid, 

1 ml trace elements, pH 7.2) with 1-AminoCyclopropane-1-Carboxylic acid 
(ACC) as a nitrogen source for 2 days at 100 rpm at 30°C. The cell was 
collected and 30 µl of toluene were added to the cell suspension and 100 µl 
aliquot of the toluenized cells was used to determine ACC deaminase activity 
at 540 nm [37]. 

Identification of the isolates

The most active bacterial isolates were selected and identified to genus level 
initially by morphological and physiological tests in addition to 16SrRNA 
[31,38]. The 5 selected actinomycete isolates, SHR5, SHR10, SHR13 SHR15 
and SHR20 were characterized using many morphological, physiological 
and biochemical tests after incubation at 30°C for 7 days on starch nitrate 
agar medium. Preliminary observations and tests including colony color, the 
aerial and substrate mycelia morphology, spore chain shape and morphology 
and other cultural characteristics like mycelium diameter and diffusible 
pigment production were detected using oil immersion lens of the light 
microscope (Olympus, Optical. Co. Ltd, Japan). The bacterial isolates 
were biochemically characterized by Gram stain, starch hydrolysis, catalase, 
oxidase, and melanin pigment production, resistant to different antibiotics, 
temperature and pH ranges and NaCl tolerance. Identification was carried 
out according Hoischen et al., [39] and Chukwuneme et al., [40]. 

Molecular characterization of the selected isolate

Molecular characterization of the bacterial isolates using 16S rDNA 
sequencing is particularly important in the case of bacteria to determine 
phenotypic profiles and it is the correct way to identify bacteria. Also the 
proportion of guanine and cytosine (constant) was determined for each 
isolate. Each bacterial isolate was grown in starch nitrate broth medium in 
a rotary shaker at 30°C for 2 days at 100 rpm. Cells were collected, and 
DNA was extracted using QIAamp DNA Mini Kit and amplified in a 100 µl 
reaction using two primers, designed based on the highly conserved region 
of 16S rDNA from various bacteria [41] and the amplified PCR part was 
sequenced using big dye terminator cycle sequence kit. The sequence of the 
DNA was determined and compared to the GenBank database using the 
BLAST program.

Preparation of bacterial filtrate for antagonistic activity

The antagonistic activities of the tested bacteria against pathogenic microbes 
was used for testing the antimicrobial activities of the cell free culture media 
of the actinomycetes on the growth of the tested pathogenic microbes. To 
prepare the cell free culture medium, the tested bacteria were grown in 
starch nitrate broth medium for 5 days at 100 rpm and 30°C. Growth of 
bacteria was measured by determining the optical density at 550 nm. The 
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Figure 1) The five selected actinomycetes grown on starch nitrate agar medium at 30°C for 5 days

 

SHJ5 SHJ10 SHR13 SHR15 SHR20 

Two-way ANOVA test was carried out to detect the effect of different factors, 
P<0.05 are considered significant.

RESULTS 

Actinomycetes were isolated from soil collected from two different farms 
on starch nitrate agar medium. The different isolates were selected, purified 
and screened for IAA production and any antagonistic activities against 
two tested pathogens, F. oxisporium and E. coli. Out of twenty actinomycete 
isolates obtained from soil on starch nitrate agar, 5 bacteria isolates, SHR5, 
SHR10, SHR13, SHR15 and SHR 20 (Figure 1) showed highly production 
of IAA which is important in promotion of plant growth and the detected 
amount was ranged from 1.2-3.1 mg/l. Their growth, color and source of 
isolation were summarized in Table 1. These isolates were highly producers 
for antimicrobial agents against E. coli and/or F. oxysporum. The isolate SHR5 
showed the highest antagonistic activities against F. oxysporum while the other 
isolates showed moderate antagonistic activities. Isolate SHR13 showed 
excellent activities against E. coli (Inhibition zone diameter was 20.01 mm) 
while isolate SHRs and SHR 20 showed no activities and isolate SHJ10 and 
SHR15 showed moderate activities where the inhibition zone diameter were 
12.32 and 10.01 mm, respectively. Also, the five actinomycete isolates were 
selected for growth on chitin agar and chitinolytic index was calculated for 
each isolate. All the tested bacterial isolates grow on chitin agar medium, 
the growth of the isolate SHR13 was high while the growth of the other 
isolates were moderate. The chitinolytic index was calculated for each isolate 
of the selected actinomycetes and it ranged from 1.0 for the isolate SHR5 
to 2.2 for the isolate SHR13. Growth and chitinase production (u/ml) in 
liquid medium were detected for the selected actinomycete isolates. The 
highest growth and chitinase production (3.24 u/ml) was recorded for isolate 
SHR13. The numbers of unites were determined from a standard curve of 
N- acetyl glucosamine (Tables 1 and 2).

The selected actinomycetes were examined and morphologically 
characterized. All isolate were Gram positive filamentous bacteria with high 
growth on ISP1 medium and had well developed aerial and substrate mycelia. 
The diffusible pigment was obtained from isolate SHR13 and SHR15 (Table 
3). Melanin pigment was produced on IPS7 only by isolate SHJ5 and SHR20 
while Hemolysis on Blood Agar was negative (γ type) for all isolates. Gelatin 
and starch hydrolysis, cellulase and protease production, the use of citrate 
and reduction of nitrate were positive for all isolates. Growth in the presence 
of NaCl (%) and temperature (°C) and pH ranges were summarized in Table 
4. Antibiotic susceptibility pattern of the tested bacterial isolates to some 
antibiotics were summarized in Table 5. 

Figures 2a-2c showed the growth of the isolate SHR13 on chitin agar, Gram 
stain and resistance to some antibiotics.

bacterial cells were collected by centrifugation at 5000 rpm for 10 min and 
the bacterial filtrate was collected and filter sterilized (Milipore filter, 0.45 
µm) and the sterile filtrate was used to detect its effect on fungal and bacterial 
growth. 

Activity of the tested bacterium against some bacterial pathogen

The antimicrobial activities of the bacterial isolate were detected using agar 
well diffusion assay against some human pathogenic bacteria (Escherichia 
coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, 
Enterobacter aerogenes and Acinetobacter baumannii). Culture of the previous 
bacteria was obtained from Maternity and Children's Hospital in Jeddah, 
Saudi Arabia. Presence of the inhibition zone around the well indicated 
positive results [42]. 

Antifungal activities of bacterial isolates using dual-plate confrontation 
assay

The target fungi were cultured on potato dextrose agar (g/l): (fresh potato 
200.0, starch 20.0, agar 13.0, pH 7). The antagonistic activity of the bacterial 
isolates was detected by their abilities to inhibit the growth of F. oxysporum using 
the modified dual-plate confrontation assays. Also, the antagonistic activity 
of the bacterium SHG13 was recorded against different fungal pathogens 
which were obtained from the culture collection of the Microbiological Lab., 
Faculty of Science, Jeddah, Saudi Arabia. Each pathogenic fungus was grown 
in the center of the plate and four agar wells were done at the edge of each 
plate. The sterile supernatant was used to fill each well with 100 µl and the 
plates were incubated at 25°C for 5 days. The percentage of inhibition was 
determined from this equation:

The inhibition rate (%)=(Colony diameter of the control – Colony diameter 
of the tested × 100)/(Control diameter)

Antagonistic activity (dry weight inhibition) in liquid medium: Five fugal 
growth discs (7 days old) of the tested fungus, F. oxisporium, was grown 
in 50 ml of Sabouraud Dextrose liquid medium in 250 Erlenmeyer flasks, 
incubated at 100 rpm for 7 days at 25°C. The culture medium was filtered and 
fungal dry was recorded after drying at 60°C for 3 days. Also, the pathogenic 
fungal growth was recorded after treated with different concentrations of the 
tested bacterial filtrates (0-15 ml/ 100 ml). The dry weight of the pathogenic 
fungus was determined as mg/l according to the method of Bouknight and 
Sadoff [43] and the antagonistic effects of the bacterial species was calculated 
from this equation: 

(Dry weight of samplex100)Growth inhibition (%)=100- 
( Dry weight of Control )

Statistical analysis: Data was statistically analyzed by t-Test to determine the 
differences between control and treated sample using SPSS software 16 and 
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TABLE 1
The source of the isolated bacteria, their color and growth on starch nitrate agar and production Indole Acetic Acid (IAA) in addition 
to the antagonistic activity against Fusarium oxisporium and E. coli

Bacterial isolate Source Color Starch nitrate agar IAA (mg/l)#
Antagonistic activity

 F. oxysporum E. coli**

SHR5 Jeddah White ++ 2.2 ± 0.05 M ND

SHR10 Jeddah Pink ++ 2.3 ± 0.02 M 12.32 ± 2.2

SHR13 Yanbu Pink ++ 3.1 ± 0.55 H 20.01 ± 2.1

SHR15 Yanbu Pink ++ 1.64 ± 0.15 M 10.04 ± 0.3

SHR20 Yanbu Gray ++ 1.29 ± 0.41 M ND

Note: ++: high growth, M: Moderate (less than 50%), H: High (more than 50%), **: Diameter of inhibition zone (mm) ± standard deviation, ND: Not detected, #: 
Concentration of IAA in medium with 2% tryptophan.

TABLE 2 
Growth on chitin agar and chitinolytic index for the selected actinomycetes and production of chitinase (u/ml) in liquid medium

Bacterial   isolate

Detection on solid medium Detection in Liquid medium

Growth on Chitin agar Chitinolytic index Growth A550nm
chitinase activity

A530nm (u /ml)

Control** + 1.4 1.24 ± 0.158 1.48 ± 0.106 1.99

SHR5 + 1.0* 1.08 ± 0 .121* 1.14 ± 0.015 2.26

SHR10 + 1.7* 1.05 ± 0.144* 1.11 ± 0.031 2.21

SHR13 ++ 2.2* 1.29 ± 0.158 1.60 ± 0.030 3.24*

SHR15 + 1.1* 1.08 ± 0.108* 1.22 ± 0.039 2.42

SHR20 + 1.2* 1.21 ± 0.109 1.11 ± 0.012 2.18

Note: Control: Bacillus sp., ++: high growth, +: moderate growth, *The difference is significantly at P ≤ 0.05 compared to control.

TABLE 3
Morphological characters of the 5 selected actinomycete isolates

Isolate no. Gram stain Shape Growth on ISP1 
medium

Color of aerial 
mycelium

Color of substrate  
mycelium Soluble pigment

SHR5 G+ve Filamentous Heavy White Dark yellow -

SHR10 G+ve Filamentous moderate Pale yellow Brown -

SHR13 G+ve Filamentous Heavy Pale pink Red +

SHR15 G+ve Filamentous Heavy Pink Brown +

SHR20 G+ve Filamentous Heavy Gray Dark gray -

Note: G+ve: Gram positive, +: Positive result; -: Negative result.

Figure 2) The growth of the isolate SHR13 on chitin agar (A), The Gram stain (B) and resistance to some antibiotics (C)
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TABLE 4
Phisiological characters of the 5 selected actinomycete isolates

Test SHR5 SHR10 SHR13 SHR15 SHR20

Melanin pigment on IPS-7 + - - - +

Starch hydrolysis + + + + +

Acid production + + + + +

Growth in the presence of 
NaCl (%) 3-10% 3-10% 3-5% 3-12% 3-10%

Temperature range (◦C) 20-45 20-50 20-45 20-50 20-45

pH range 5-8 5-9 5-9 5-8 5-9

Gelatin hydrolysis + + + + +

Use of citrate + + + + +

Nitrate reduction + + + + +

Protease production + + + + +

Cellulase production - + + +

Hemolysis on Blood Agar γ γ γ γ γ

Note: +: Positive result; -: Negative result.

TABLE 5
Antibiotic susceptibility of the tested bacterial isolates to some used antibiotics

Isolate no.
*Resistance to antibiotics

AK CAZ PRL IMI ATM CIP

SHR5 S R R S R S

SHR10 S R R S R S

SHR13 S R R S R S

SHR15 S R S S R S

SHR20 S R R S R S

Note: *(AK): Amikacin; (CAZ): Ceftazidime; (PRL): Piperacillin; (IMI): Imipenem; (ATM): Aztreonam; (CIP): Ciprofloxacin, R: Resistant (16 mm or less); S: Sensitive (20 
mm or more).

TABLE 6
Results of NCBI BLAST query for the 5 sequences of the 
selected actinomycetes isolated from soil

Isolate no. Species Identity (%)

SHR5 Streptomyces  daquingensis NEAU-ZIC8 99

SHR10 Streptomyces  griseocameus DSM4004 99

SHR13 Streptomyces   abyssalis YIM10400 97

SHR15 Streptomyces thermodiastticus JCM4840 97

SHR20 Streptomyces  hebeiensis YIM001 98

Also, DNA was extracted from the five bacterial isolates, purified, amplified 
and sequenced. The obtained data were compared with the found at the 
GenBank data base and the phylogenic tree was obtained. The bacterial 
isolates were identified as S. daquingensis NEAU-ZIC8, S. griseocameus 
DSM4004 S. abyssalis YIM10400, S. thermodiastticus JCM4840 and S. 
hebeiensis YIM001 (Figure 3 and Table 6). There are four different bases and 
the frequency of the four nitrogenous base attached to the sugar can vary 
between nucleotides. The bases on each strand pair up with each other, 
holding the two strands of DNA in a double helix. The bases always pair 
up in the same way and the tested actinomycetes are rich with cytosine and 
guanine and their percentage were more than 60% (Figure 4).

Figure 3) Phylogenetic tree reconstructed from data obtained for the five 
isolated actinomycetes  

Figure 4) The base frequencies of the nucleotide bases of the selected 
bacterial isolates
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the used amount of the bacterial filtrate and maximum growth inhibition 
(93%) was recorded by addition of 20 ml of the bacterial filtrate which may 
contain antibiotic like materials. Also the isolate S. abyssalis SHR13 showed 
excellent activity in phosphate solubilization and production of siderphore, 
ACC deaminase, IAA and GA3 in vitro (Table 9).

TABLE 8
Effect of different concentrations of the bacterial filtrate 
of isolate SHR13 (cell free culture medium) after 7 days of 
incubation on the dry weight (mg) of F. oxysporium and growth 
inhibition (%)

Filtrate Conc. (%) Dry weight (mg/l) % Inhibition

0.0 (control) 179 ± 6.9 (100 %) 0.0

2 168 ± 3.8 (93.8%) 6.2

4 110 ± 4.6 (61.4%) 38.6

8 99 ± 6.1 (55.5%) 44.5

12 69 ± 3.7  (38.55) 61.5

16 41 ± 2.0 (22.9%) 87.1

20   11 ± 0.59 (6.1 %) 93.9

TABLE 9
Phosphate solubilization, siderphore production, Indole Acetic 
Acid (IAA), Gibberellins (GA3) and ACC deaminase production 
by S. abyssalis SHR13

Bacterial 
isolates

Phosphate 
solubilization 

(mm)

Siderphore 
production 

(mm)

ACC 
deaminase 

activity 
(mmol)

Concentration 
of  IAA (mg/l)

Concentration 
of GA3 (mg/

ml)

S. 
abyssalis 
SHR13

6.0 ± 0.91* 11.4 ± 
2.09* 1.15 ± 0.01 0. 44 ± 0.69 0.104 ± 0.15

Note: *: significant results compared to control.

DISCUSSION

Several studies reported filamentous bacteria isolation from soil, extreme 
environments, and hot deserts and they were of medicinal importance. In 
recent years, ray or filamentous bacteria (actinomycetes) produce secondary 
metabolites which considered efficient source of the feasible biocontrol 
agents to treat fungal diseases of plants than chemically formed fungicides. 
These bacteria were isolated mainly from soil whereas they can decompose 
many organic compounds like chitin which is a polymer formed from N-acetyl 
glucosamine [31]. This complex is mainly found in the cell walls of fungi and 
exo-skeleton of insects. In this study, 20 gram positive Actinomycetes were 
isolated and five isolates showed high growth on chitin agar and antagonistic 
activity against two test pathogens. These isolates were characterized; they 
have a high G+C base composition, two types of mycelia and chains of 
conidia. Some morphological features of actinomycetes resample fungi and 
the most common genus of actinomycetes in soil is Streptomyces which can 
be used to manage fungal and human pathogens and more than one-half of 
the medicine used antibiotics like aureomycin, chloromycetin, kanamycin, 
neomycin, streptomycin, and terramycin produced from soil actinomycetes 
[44]. 

The soil-borne Fusarium caused mainly a wilt disease which cause great loss 
in many plants [45,46]. Soil is the natural habitat for fungi which infect 
more than 80% of plants and physical and chemical methods are not 
effective in controlling the spread Fusarium and fungal disease due to the 
resistant development by the fungus [47]. The secondary metabolites of some 
functional microbes can be used in biological control which is economically, 
eco- friendly and safe [48]. In the environment, these bi-agents can degrade 
chitin which is the second most abundant linear polymer which is a complex 
of β-1, 4 N- acetylglucosamine, found mainly in fungal cell walls [49]. Several 
Streptomyces species like S. lividans, S. virdificans and S. halstedii produce 
chitinase which are used widely in agricultural, biological and environmental 
process [50-52]. Thus, this study aimed to isolate, identify and characterize 
soil actinomycetes which produce both chitinase and good antifungal agents 
against different fungal pathogens without any toxicity to soil. Hemolysis is 
the breakdown of red blood cells and based on haemolytic activity of the 
tested bacterial isolate, no hemolysis was recorded, thus, they can be used 
safely in soil. It was reported that, Actinobacteria had biosynthetic potential 

From the previous results, the isolate SHR13 was the most antagonistic 
isolate against F. oxysporum and E. coli in addition it was high producer of 
IAA. The antagonistic activity of this isolate against different pathogens 
was recorded in Table 7 and Figures 5a-5f. The selected isolate SHR13 was 
identified as S. abyssalis YIM10400 with 97% similarity level. It had excellent 
antagonistic activity against some bacterial and fungal pathogens. Efficient 
antagonism activities were recorded against both F. oxysporum and Aspergillus 
niger while the highest antibacterial activity in vitro was evaluated against 
Klebsiella pneumoniae, Pseudomonas, Acinetobacter and E. coli and the lowest 
inhibition was against Staphylococcus aureus. The inhibition zone diameter 
was ranged from 11-25 mm.

TABLE 7
The antagonistic activity (diameter of the inhibition zone) and 
percentage of inhibition (%) of S. abyssalis SHR13 against 
some pathogenic bacteria and fungi

Tested Bacteria
Diameter of the 
inhibition zone 

(mm)
Tested fungi Percentage of 

Inhibition (%)

Staphylococcus 
aureus 11.9 ± 1.12*

Fusarium 
oxysporum 
(Control)

60.9 ± 11.03

Enterobacter 
aerogenes 20.0 ± 2.19* Fusarium 

redolense 39.0 ± 8.07#

Acinetobacter 
baumannii 20.7 ± 2.41* Curvularia 

khuzestanica 33.9 ± 7.05#

Escherichia coli 20.1 ± 2.11* Rhizoctonia solani 45.9 ± 1.09#

Klebsiella 
pneumoniae 25.0 ± 2.19* Aspergillus niger 55.0 ± 4.11

Pseudomonas 
aeruginosa 21.4 ± 6.18* Candida albicans 40.0 ± 1.40#

Note: *: significant results compared to control (5 µg/ disc ampicillin), #: significant 
results compared to Fusarium oxysporium.

The filtrate of the isolate S. abyssalis SHR13 was active against all the tested 
bacteria with inhibition zone diameter ranged from 111.9-25.0 mm. the 
highest activity was against Klebsiella pneumoniae while moderate activity was 
against Acinetobacter baumannii, Enterobacter aerogenes, E. coli and Pseudomonas 
aeruginosa but weak activity was recorded against Staphylococcus aureus (Figure 
5a and Table 7). Moreover, the antifungal activity of S. abyssalis SHR13 was 
detected against different plant pathogens and the percentage of inhibition 
was ranged from 40- 61%. The highest antifungal activity was against F. 
oxysporum and A. niger but the lowest antifungal activity was against Candida 
albicans. 

The antimicrobial activities of the isolate S. abyssalis SHR13 against 
F.  oxysporum was determined in liquid medium and fungal dry weight 
after 5 days of growth was determined (Table 8). The effect of different 
concentrations of cell free bacterial supernatant on fungal growth were 
recorded and the results revealed that the pathogenic fungus, F. oxysporum 
showed higher sensitivity to the bacterial filtrates. Based on the above 
mentioned results, the inhibition percentage was increased with increasing 

Figure 5) The antagonistic activity of the isolate S. abyssalis SHR13 
against E. coli (A), K. pneumoniae (B), P. aeruginosa (C), E. aerogenes (D), 
fungal inhibition activity compared to control fungal growth against F. 
oxysporum  (E) and A. niger (F)
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cell wall degradation of many fungal diseases. Thus, species of the genus 
Streptomyces can be used safely to biocontrol many plant phytopathogens and 
enhance plant growth. 
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