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the initial rollout phase in Lupane and Zvishavane districts of Zimbabwe 
were as low as 30%. Our preliminary observations motivated this research as 
the poor germination and crop stand directly affect yield, potential revenue, 
and quinoa adoption by smallholder farming communities. Unfortunately, 
there is limited research on the germination and emergence of quinoa in low 
rainfall or marginal areas.

Therefore, this study aimed to evaluate different water application frequencies 
on different soil types during early quinoa crop establishment.

MATERIALS AND METHODS

Experimental site

The experiment was carried out at the Midlands State University (Zimbabwe) 
campus in a greenhouse with an average temperature of 33⁰C to mimic the 
temperature of marginal areas. The site is at 29°84⁰ E, 19°49⁰ S, and 1420 m 
above sea level and falls under the Agro-ecological zone (Natural Region) III 
of Zimbabwe that receives an annual average rainfall range of  600-750 mm 
per annum.

Experimental design and treatments

The experiment was set up in a Completely Randomized Design (CRD) and 
laid out as a 4 × 3 factorial treatment structure with two factors; irrigation 
frequency and soil type. The irrigation regimes were irrigation after every 
one day, two days, three days, and four days until the end of the experiment 
and the soil types were sand, loam, and clay. The treatments were replicated 
three times.

Experimental procedure

Styrofoam seedling trays (200-cell) were filled with the different soils (sand, 
loam, and clay). Each treatment comprised 20 seeds replicated three times, 
watered to field capacity, and left to drain excess water. The different soils 
were irrigated after skipping one, two, three, and four days.
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rate index (p<0.05), seedling height (p<0.05), root length density (p<0.05), 
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Poor seed establishment threatens the adoption of quinoa as a potential food 
crop in semi-arid parts of Zimbabwe. We used a 4 × 3 factorial experiment 
arranged in a Completely Randomised Design (CRD) to establish the effects 
of irrigation frequencies and different soil types on quinoa germination 
and early growth. We used three soil types (sand, loam, and clay) and four 
irrigation frequencies (after every 1, 2, 3, and 4 days). Measurements included 
days to 50% emergence, germination percentage, mean germination time, 
germination rate index, and the coefficient velocity of germination, seedling 
height, final crop stand, and root density. An Analysis of Variance (ANOVA) 
was done using GenStat 18th Edition and mean separation was done using 
the Least Significant Difference (LSD) at a 5% significance level. There 
was an interaction between irrigation frequency and soil type on days to 
50% emergence (p<0.05), germination percentage (p<0.05), germination 

INTRODUCTION

Introducing domestically grown quinoa (Chenopodium quinoa Willd) in 
developing countries, especially in Africa, to be part of the diet has great 

potential to contribute to food and nutrition security [1-3]. As long back as 
the early 1990s, the potential of quinoa for agro-based African economies was 
noticed as it was envisaged that the crop could be grown extensively in Africa 
in response to the growing demands of the crop in Asia, Europe, and the 
USA [4]. Quinoa has attracted particular attention around the globe because 
of its health and nutritional benefits, as well as its ability to adapt to different 
growing environments, which include but are not limited to nutrient-poor, 
saline soils and drought-prone marginal areas [5-8]. Furthermore, quinoa is 
a drought-tolerant crop that can grow successfully and produce seed grain 
even in dry semi-desert conditions that receive an annual rainfall of less than 
200 mm [9-12] and even under arid environments [13,14]. Consequently, the 
crop has thrived in areas susceptible to drought in Africa [7].

The introduction of quinoa in Africa started in the late 1990s in Ethiopia 
and Kenya [15], Malawi in 2010 [16], and more recently in Zimbabwe in 
2017 by the Zimbabwe Resilience Building Fund (ZRBF) [17]. Introducing 
quinoa in Zimbabwe addresses topical issues on food security, hunger, 
malnutrition, and poverty in the face of the detrimental effects of climate 
change and variability. In Zimbabwe, there is a decline in the production of 
staple food crops such as maize and wheat, which negatively impacts most 
smallholder farming communities regarding food security and nutrition [18]. 
In addition, Zimbabwe’s food security is continuously being threatened by 
prolonged dry spells and droughts, especially in semi-arid regions, which are 
the most affected. 

Quinoa production in the country is still in its infancy [17], and the successful 
rollout and scaling up to more smallholder farmers in marginal areas is 
being hampered by poor germination, subsequently affecting the final crop 
stand. Although considered a drought-tolerant crop, the germination and 
emergence percentage reported by many smallholder quinoa farmers during 
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Soil properties measured 

The soils belong to the fersialistic group with dominant kaolinite clay 
minerals [19].

Bulk density: The initial weight of the core ring was established, and then 
the soil samples were placed in a drying oven for 24 hours, at 105 degrees 
Celsius. After 24 hours, the rings were weighed, had their final weight 
recorded, and then bulk density was calculated using the formula according 
to Blake [20];

(BD) Mass of oven dry soilBulk Density
Total Soil Volume

−
=     

Porosity: Porosity was calculated according to the formula by Hao et al. [21].

(st) 1
(2.5)

DbPorosity
Dp

= −

Soil pH: The pH was measured using a pH meter, PH TESTER PH-107. 
Following the procedure by Rayment and Lyons [22], air-dried samples of 
the three soils were mixed with a diluted concentration of 0.01 M of calcium 
chloride (CaCl

2
) at a 1:5 ratio. Twenty (20) grams of each soil was measured, 

added to a beaker, and then 100 ml of the concentration. The beaker was 
shaken and left to stand for 20-30 minutes. After that, the pH meter was 
dipped in the solution while avoiding contact with soil, and readings were 
collected. 

The different soil properties measured are presented in Table 1.

Quinoa growth parameters measured

Days to 50% emergence: The days were recorded when 50% of the seedlings 
had emerged.

Final germination percentage: It was measured up to the point when no 
more seeds were germinating.

It was calculated as 

% Number of Seeds germnaitedGermination
Total number of Seeds Sown

=

Mean Germination Time (MGT): The Mean Germination Time (MGT) 
was established using the equation by Ellis and Roberts [23].

Dn
MGT

n
= ∑
∑

Where n is the number of seeds germinated on day D and D is the number 
of days counted from the beginning of germination.

Coefficient Velocity of Germination (CVG): CVG shows rapidity of 
germination, 

1 2 3.....
100(N1T1 N 2T 2 N3T3....NxTx)

N N N NxCVG + +
=

+ +

Where N is the number of seeds germinated daily and T is the number of 
days from the seedling responding to N [24].

Germination rate index (GRI): A Germination Rate Index (GRI) to evaluate 
seedling vigour was determined following the procedure described by Bouton 
et al. [25] and modified by Fowler [26]. GRI was calculated as: 

G2/2 + G4/4 + G6/6 + G8/8 

G2, G4, G6, and G8 are germination percentages at 2, 4, 6, and 8 days after 
sowing.

Seedling height: A 30 cm ruler was used to measure the seedling height after 
30 days from sowing. A ruler was placed against the plant, and the height was 
measured from the top of the soil up to the apical meristem.

Final crop stand: The final crop stand was calculated on the last day of the 
experiment at six weeks.

Final crop stand=surviving (standing) seedlings/total planted seeds 

Root length density: Root Length Density (RLD) is calculated as the total 
length of the roots, and then divided by the volume of the soil sample [27]:

RLD=LR/V
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LR is the length of the roots (cm) and V is the volume (cm3) of the root-
permeated soil sample.

Data analysis

Analysis of Variance (ANOVA) was done using GenStat 18th edition, and 
separation of means was done using the Least Significance Difference (LSD) 
test at a 5% significant level.

RESULTS 

Effects of irrigation frequency and soil type on the number of days to 50% 
emergence of quinoa seedlings

There was an interaction (p<0.05) between irrigation frequency and soil type 
on the number of days to 50% emergence. Quinoa planted in sand and 
irrigated at 1-day intervals was the fastest to reach 50% emergence, emerging 
in an average of 2.67 days (Figure 1), even though there was no statistical 
difference between quinoa seeds planted in the sand, clay, or loam irrigated 
at 1-day and sand irrigated at 2-day intervals. On the other hand, quinoa 
seeds planted in loam and sand irrigated at 3-day intervals and in loam and 
sand irrigated at 4-day intervals took the longest to reach 50% emergence.

Effects of irrigation frequency and soil type on final germination 
percentage of quinoa seeds

There was an interaction (p<0.05) between irrigation frequency and soil type 
on the final germination percentage of quinoa seeds. Seeds planted in sandy 
soil and irrigated after 1-day intervals recorded the highest germination 
percentage of 96.7%, although not significantly different from clay and loam 
irrigated at 1-day intervals, loam and sand irrigated at 2-day intervals, loam 
at 3-day intervals and loam at 4-day intervals. In contrast, seeds planted in 
clay soil and irrigated after 3-day intervals recorded the least germination 
percentage of 41.7%, although not significantly different from sand irrigated 
at 3-day intervals, clay and sand irrigated at 4-day intervals (Figure 2). Seeds 
planted in loamy soil recorded a similar germination percentage across all 
four irrigation frequencies, averaging 77.5%. 

Figure 1) Effect of irrigation frequency and soil type on the number  of days to 
reach 50% emergence of quinoa seedlings. Note: ( ) CLAY, ( ) LOAM, (
) SAND

Figure 2) Effect of irrigation frequency and soil type on the final germination 
percentage of quinoa seeds. Note: ( ) CLAY, ( ) LOAM
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Effects of irrigation frequency and soil type on the final quinoa crop stand

There was an interaction (p<0.05) between soil type and irrigation regime 
on the final crop stand of quinoa seedlings. The highest quinoa crop stand 
(85%) was recorded in sandy soils irrigated at 1-day intervals, while all other 
treatments had statistically similar low crop stands except for loam and sandy 
soils irrigated at 4-day intervals (Figure 6).

Effects of irrigation frequency and soil type on root length density of 
quinoa seedlings

An interaction (p<0.05) between irrigation frequency and soil type on the 
root length density of six-week-old quinoa plants was observed. Quinoa 
planted in loam and irrigated at 2-day intervals recorded the lowest root 
density (3.07 cm/cm3), which was not statistically different from clay and 
loamy soils irrigated at 1-day intervals. In contrast, those planted in sand and 
irrigated at 3-day intervals recorded the highest root density of 21.23 cm/
cm3 but was not significantly from those in sand irrigated at 2-day intervals 
(Figure 7). In addition, sand had the highest root density at all irrigation 
frequencies.  

Effects of irrigation frequency and soil type on mean germination time of 
quinoa seeds

There was no interaction (p>0.05) between different irrigation frequencies 
and soil types on the mean germination time of quinoa seeds, nor were 
there significant differences (p>0.05) in the mean germination time of 
quinoa seeds between different irrigation frequencies. However, the mean 
germination time of quinoa seeds was influenced by soil type (p<0.05). The 
mean germination time was the shortest (3.25 days) in quinoa seeds planted 
in sandy soil. There was no significant difference in the mean number of days 
between clay and loam soils, which recorded the longest mean germination 
time of 4.5 and 4 days, respectively (Figure 3).

Effects of irrigation frequency and soil type on germination rate index 
(GRI) of quinoa seeds 

There was an interaction (p<0.05) between irrigation frequency and soil type 
on the germination rate index of quinoa seeds. Quinoa seeds planted in 
sand and irrigated at 1-day intervals recorded the highest GRI of 70.4%. 
In comparison, those planted in loam soil and irrigated at 3-day intervals 
recorded the lowest mean GRI of 29.4%, although not significantly different 
from those planted in clay and loam irrigated at 2-day intervals, sand at 3-day 
intervals, loam and sand at 4-day intervals (Figure 4). Generally, the GRI 
of quinoa seeds planted in sand soil decreased as the irrigation intervals 
increased from one day to four days. On the other hand, there was no 
statistical difference in GRI on clay soil irrigated at the four frequencies.   

Effects of irrigation frequency and soil type on the coefficient of the 
velocity of germination of quinoa seeds 

There were no treatment effects on the coefficient of the velocity of 
germination of quinoa seeds (p>0.05).

Effects of irrigation frequency and soil type on the seedling height of 
quinoa

There was an interaction (p<0.05) between irrigation frequency and soil type 
at the height of quinoa seedlings. Quinoa seedlings in loam soil irrigated at 
4-day intervals recorded the shortest plants averaging 9.3 cm. However, they 
were not significantly different from quinoa seedlings in sand and clay soil 
irrigated after 3-day intervals, sand soil irrigated after 2-day intervals and clay 
soil after 1-day intervals (Figure 4). The tallest seedlings were in loamy soil 
and sandy soil irrigated at 1-day intervals and loam soil at 2-day intervals 
(Figure 5). 

Figure 3) Effects of soil type on mean germination time of quinoa seeds

Figure 5) Effect of irrigation frequency and soil type on the seedling height of 
quinoa seedlings . Note: ( ) CLAY, ( ) LOAM, ( ) SAND

Figure 6) Effects of irrigation frequency and soil type on the final quinoa crop 
stand at six weeks . Note: ( ) CLAY, ( ) LOAM, ( ) SAND

Figure 4) Effect of irrigation frequency and soil type on quinoa seeds 
Germination Rate Index (GRI) . Note: ( ) CLAY, ( ) LOAM, ( ) SAND Figure 7) Effect of irrigation frequency and soil type on the root density of 

quinoa seedlings at six weeks. Note: ( ) CLAY, ( ) LOAM
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in marginal areas solely rain-fed, quinoa establishment should be timed to 
coincide with the wettest period of the rainy season. If under irrigation, 
frequent irrigation schedules can be scheduled during the early establishment 
period.

Although conclusive results can be deduced from the research findings 
on seed germination, emergence, and early growth from this nursery 
experiment, further studies can be done as field experiments and see the 
effects of irrigation frequency and soil types on more growth parameters, 
yield, and quality of quinoa. Also, different planting depths on the different 
soils and irrigation types should be investigated to see their impact on 
quinoa’s emergence and early growth in marginal areas.
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DISCUSSION

Effects of irrigation frequency and soil type on the number of days to 
50% emergence, mean germination time, germination rate index, final 
germination percentage, and final crop stand 

A lower porosity translates to poor soil aeration and seed respiration, which 
means lower metabolic energy for seed germination [28]. The lowest final 
germination and final crop stand observed in clay soils (bulk density 0.91 
g/cm3 and porosity 0.85) (Table 1) could have been due to seed decay as 
a result of anaerobic conditions [29]. In sandy soils that were frequently 
irrigated, the high porosity (0.96) ensured that any excess water drained 
away and that adequate moisture and oxygen, critical in seed germination 
and emergence, were available. Thus, lack of adequate water supply in seeds 
resulted in seeds not germinating, resulting in the decay of some seeds [29]. 
In addition, the high bulk density of sand (1.2 g/cm3) (Table 1) positively 
influenced soil moisture and seed-to-soil contact. Lapen et al. [30] explained 
that these characteristics affect seedling emergence. Lafond et al. [31] also 
stated that seed-to-soil contact is important where high seedling emergence 
percentages are desired. Soureshjani et al. [32] also noted that the best 
seed-to-soil contact occurred at a bulk density of 1.4 g/cm3, giving the best 
sesame seedling emergence rate. Total porosity that ranges from 0.54-0.96 is 
commonly accepted in a growth medium for crop cultivation [33]. Our soils 
were within the acceptable range with values between 0.83-0.96 (Table 1).

TABLE 1
Soil bulk density, porosity and pH results of the soils used in 
the study

Soil type Bulk density (g/cm3)   Porosity pH
Sand 1.2 0.96 5.5
Clay 0.91 0.85 6.3
Loam  0.83 0.83 6.8

Effects of irrigation frequency and soil type on quinoa seedling height

Bulk density determines soil water, air, and nutrient retention capacity, 
while pH determines nutrient availability [34]. Loamy soil had the least bulk 
density of 0.83 g/cm3, which improved available water capacity, water and 
air movement in the soil and root growth, increasing plant growth. The pH 
of the loam soil was 6.8 (Table 1), which is within the optimum range (6.5-
8.5) for plant nutrition, as reported by Zucconi [35]. However, quinoa plants 
irrigated at four-day intervals recorded the shortest seedlings, especially 
those in sandy soil. This is probably due to water deficit since sand had 
a high bulk density of 1.2 g/cm3 and a porosity of 0.96 (Table 1), which 
dried out quickly. Also, the longer irrigation frequency, at four-day intervals, 
reduced the quinoa height across all soil types. Geerts et al. [36] observed 
that the pH value increased by decreasing the amount of irrigation water, 
which negatively affects plant growth as it makes some essential nutrients 
unavailable by locking them. 

Effects of irrigation frequency and soil type on root length density of 
quinoa seedlings

Numerous studies have reported that water stress or deficit irrigation during 
the vegetative growth stage triggers root system development of quinoa 
[37,38]. Under water-stress conditions, plants respond by arresting apical 
canopy growth and directing attention to developing an extensive root system 
to support the canopy when water is available. Similarly, Joslin et al. [37] 
found a significant increase in mass root growth under drier conditions in 
forest roots. On the other hand, clay and loam soils that were frequently 
irrigated had the least root densities. Because of their low porosity values of 
0.85 and 0.83, these soils probably offered some resistance to root growth; 
therefore, the root densities under all four irrigation regimes were very poor, 
as also alluded to by Bengough et al. [38].  

CONCLUSION

The early establishment of quinoa can be linked to soil type and irrigation 
frequency. Quinoa seeds planted in sandy soils that are frequently irrigated 
had a high germination percentage, a fast emergence rate, and a good crop 
stand. Although popular as a drought-tolerant crop, quinoa is sensitive to 
water stress, particularly during the early growth, especially in porous and 
well-drained soils. The quinoa seedling grows faster in sandy and loamy 
soils frequently irrigated. The young quinoa seedlings developed robust 
root networks in less frequently irrigated sandy soils. Results conclude that 
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