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The issue of plant pests is a critical area of investigation at present. While
numerous chemical solutions are available, their toxic effects make the use
of natural enemies a preferable alternative. This article introduces a
fractional calculus approach to model the dynamics between mature and
immature natural enemies of plant pests. The study discusses the existence and

uniqueness of the solution, the non-negativity of the solution and both
global and local stability of the equilibrium point. Given that memory is
intrinsic to biological systems, the proposed technique is advantageous due
to the memory effect of fractional derivatives, leading to more accurate
solutions. Simulations with different fractional parameters generate optimal
solutions.
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INTRODUCTION

In the present era, the plant-pest problem is a significant global issue.

Discussions about plant pests date back to the early 18th century, with
George and Watt addressing the pests and delights of tea plants in 1898 and
Hilderic Friend studying worms as plant pests in 1911 [1,2]. Over time,
many authors have proposed solutions to plant-pest problems, including
chemical solutions, biological enemies and pest infections.

Numerous chemical solutions have been explored. For instance, Choo Ho,
et al. discussed the effects of some chemical pesticides in 1998 and Hajji et
al. examined nanobased pesticides in 2021 [3,4]. However, chemical
solutions can sometimes be harmful to both plants and humans. BN Aloo
et al. highlighted the adverse effects of agrochemicals on beneficial plant
rhizobacteria in agricultural systems in 2021 [5].

Biological enemies are a preferable solution to plant-pest problems. The
study of biological control began in 1888 when the Vedalia bug was
introduced in California from Australia [6]. Paul DeBach and David Rosen’s
1991 book on biological control explains how natural enemies can
biologically control pest populations [7]. In 1995, Thomas et al. published
research on the biological control of grasshoppers by fungi [8].

Mathematical modeling of plant-pest interactions has gained traction in
recent years. Haith et al. studied models for pest management in the analysis
of potato integration in 1987 [9]. Maiti et al. developed a mathematical
model on the usefulness of biocontrol for pests in tea in 2008 [10]. Kumar
et al. investigated a mathematical model on plant pests and natural enemies
with twin gestation delays as a biological control technique in 2018. Many
researchers have attempted to construct robust models by addressing various
real-world challenges to mitigate flaws in predator-prey relationship models.

Currently, many plant-pest models are developed using ordinary differential
equations with various parameters, including delay, harvesting, etc. The
fractional differentiation approach for plant-pest models is a new research
area. Fractional differentiation introduces a memory effect, which is a
valuable criterion for solving plant-pest problems. Bhattacharya et al.
studied a fractional differential approach with memory for the paradox of
enrichment in 2013. Samanta et al. developed a fractional-order prey-
predator model incorporating prey in 2018 and Moustafa et al. wrote a
paper on a fractional-order prey-predator model in 2019.

Several definitions of fractional differential equations exist, including
Grunwald-Letnikov, Riemann-Liouville and Caputo. Among these, Caputo’s
fractional derivative is the most popular and well-developed, with initial
conditions similar to those for integerorder derivatives.

Recently, researchers have increasingly focused on fractional differentiation
due to its memory terms and properties. Caputo fractional derivatives have
gained interest for their applications in modeling pandemics like
COVID-19, electrical engineering, biochemistry (e.g., modeling proteins and
polymers), acoustics, material modeling, rheology and mechanical systems.
The fundamental properties and applications of fractional derivatives can be
found in the works. Given that memory is inherent in biological systems,
fractional derivatives are particularly relevant. This is why I am studying a
fractional-order plant-pest model involving immature and mature biological
enemies. For fractional differential based model one can cite the following
papers.

In this research paper, we discussed a fractional-order differential model for
plant pest mature and immature biological enemies.

MATERIALS AND METHODS

Using a fractional derivative, we examined the food chain dynamics of plant
pests with their immature and mature biological enemies in this work. In
this case, we presented the following mathematical approach:

¢ Plant (x(t)), Pest (y(t)), premature biological enemy (z{(t)) and mature
biological enemy (z;(t)) are the four categories of species.

e With an inherent progress rate of yg and a carrying capacity of yo/Bo,
the plants grow logistically. The per capita progress rate of the plants is x
(Yo—PBox) when there is no pest population.

e Pests harvest plants and the holing type-1 functional response is the
result of this harvesting.

e The pest is cropped by a mature biological enemy with a holing type-1
functional reaction.

e Let y; represent the cropping rates of plants by pests, y; represent the
progress rate of pests by plants, a; represent the cropping rate of pests
by mature biological enemies and a, represent the progress rate of
immature biological enemies by mature biological enemies and pests.
The mortality rates of pest, immature biological enemy, and mature
biological enemy are d, d; and d, respectively. The pace at which
immature biological enemies evolve into mature biological enemies is o3
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and the rate at which mature biological enemies proceed through
immature biological enemies is a3.

Plant pest premature-mature biological enemy

‘Dl = x(v0 — Bor — My),
°D%y = y(yer — d — oy 22), (L1)

‘D’z = agyzs — a3z — dyz,

CDJZQ = ¥32] — dQZQ.,

With initial conditions: x (0)>0, y (0)>0, z(0)>0 and z,(0)>0.

The following is a summary of our work: We reviewed some basic fractional
derivative definitions in the preliminaries section. The existence and
uniqueness results for the system (1.1) are derived in the main results
section. For the system (1.1), the equilibrium points and their stability
analysis are also performed. Numerical analysis is performed at the end of
this work using matlab code fde12 for fractional differential equations.

Preliminaries

We will review certain terminology and basic fractional calculus results in
this section, this will be used for the duration of the research.

Definition: The fractional integral of a function ¢ with order >0 lower
bound zero is defined as follows.
i
I*a(t) = ) /(: (t—nolm)dy, t>0,

and "o(t) = @(t), where the Euler Gamna function is U(-). For b > 0, this fractional
integral satisfies the conditions 1% o I* = 15+,

Definition: The Riemann-Liouville fractional derivative of a function ¢
with the lower limit zero of order >0 is given by

1 dnot .
Digit) = .——f (t — )" (),
Iin—48)dt f,

where n — 1 < § < n,on € N, up fo order (n — 1), the function (1) has an absolutely
continuous derivative. Moreover DVa(t) = ¢(t) and D' IPG(t) = ¢{t) for t = 0.

Definition: The caputo fractional derivative of a function ¢ € C" ([0,%))
with the lower limit zero of order 8>0 is given by

/(f " 3 —LJ (1),
t),l dy®

Do) =

wheren —1 < d <n,neN.

Consider the system
“Df(t) = g(f.1)

with the initial condition: f(to)=fty, where 8 € (0,1], g: T x [tg, ) — R,' C
Rr, if g(f,t) satisfies the local Lipschitz condition with respect to f, then there
exist a unique solution of (2.1) on T" x [to, ).

RESULTS AND DISCUSSION

Existence and uniqueness

Theorem ider the region I' x [tg,T) where I' = {(z,y.
B max{|z], | 5|} < M} where T < oo, X = (2,2, n)and X = (Z.7
Then for each X(tg) = (X, 4, 21,0 72,) € T, there exist o unigue solution X(t) € [’ uj
system (1.1) with initial condition X (ty), which is defined for all £ > t,

(). pa( X)), Where

Proof. Now consider a relation p(X) = (p1(X), p2(X), ps(X

lX) = (70 — fox — 1y
22 X) = ylrox — d — evyz0 — cvazmy)
(X = oz — oz —dizy
X)) = oz — dazg.
%X, X €I, now,

llo(X) = p(X)| = 1pu(X) = pu(X)] + [p2(X) = pa( XD + (X)) = pa(X)] + |pa(X) = pu( X))

= |z — Bt — ) — Elwy — BoE — 1| + lylrer —d — « —d — oy

+ooyzs — ogzy — dyzy — (o » —ogsy — dy 5 )| + |z — o — a3y — da|

1) — ey — )| + [ya(zy — ) — dly — §) — ca(yz

+leva(zay — 2y) — dy (21 — 51) — a2 — 51)| + |oa(z — 51) — da(z0 —

= oz — &) = fola® —

lp(X) = p{XY|| < 0l — | + Bo2M |& — &| + 1 M|z — &| + 7ely — 5|M + dly — g + s M|y — 4]

toaM|2 — S| +di|z — 5]+ 03|z — &l + ol — 5]+ bz — B

= (%

Assume-

)+ 2M By + M)l — B| + (M, +d + Moy Yy — ] + (dy + 2e5)|z — 5| + (Mg + dy)|z — 5

E = maz{y + 2M By + My, Mya + d + May, dy + 203, Mag + do}
60X} — o) < ElX — X

As a result, p(X) satisfies the Lipschitz condition with regard to X and hence
there exists a unique solution X(t) for system.
Non-negativity and uniform boundedness

The solutions of the system which (1.1) starts in R%, and non-negative and
uniform bounded. Proof. Applied the results used in. Suppose

x(t) = rm+ (3.1)
then
Diy(t) = D m+f—) Diy(t) + (1) Do + (B2
= 2{v — foz) - den
g
DN (1) + pxit) = (p+ vo)a — Bur? +—(p—rnum+ rJ—rflJ L+‘f‘“"‘r)—em-

Let us assume p < min{d, dy,da}. then

P+

DPy(t) + px(t) < —folx — TN P+

Now applying the comparison theorem for fractional order, one reach

{p+ ’Ju}:

0<x(t) < o
=1

X(0)Es(—pt”) + (") Es g (—p(t)").

Where Eg and Eg, 5.1 are mittag leffler function. Now by taking t — % one
get

(p + 70)?

() <
\(t) < Apy

Hence, the solutions of system of fractional differential equation begins in
R*, are uniformly bounded with in the region 31 defined as
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L . .. +w)? 5 _
X1 = {(z. 4, 21,22) € RL: x(t) < gy 0}. (3.2) E L}'i_:g = ¥z — sz,
- —rfg.‘;g{'_' = []}
T 1 A
Now we will prove that the solution of fraction order system is non-negative. = 23 2 2B (—dal’),

Consider the first equation of system of equation. = zy > ()

.--Dl‘jl{. — _E'["‘_I'II — ._|:|;_|.f.' — 9 [_-!_,f]l

Hence the system of equation 1.1 have non-negative solutions.

Basic reproduction number
From equation 3.1 and 3.2 and considering ® — O one get p

For finding equilibrium points and their stability we will introduce basic
reproduction with the help of pest free equilibrium point of system of

. diapy 2 -
x() = () + Dy(r) + T ¢ TN, < M = (3.3) equation.
% [ebgD) a2y 4po
From ?7 and 3.3 one get Theorem: The basic reproduction number Ry for the system of equation
2D 5 B0 — B — 4D, (1.1) is given by Ro=y,v0/dPo-
D0 > T,

Proof: Rewriting the given system of equation (1.1)

’D‘sy = ylar — d — oy 22),

. D2y = oy — aam — dizy,
where T1=(yg—Bot—Y17), from comparison theorem of one get e

5
D’z = agzy — dyza,

D'z = (v — Box — 1Y),

- PO ryl g system 3.4 can be written as
xIr - .r.l:_l.El'.ﬁ_l{l [f J DIX(H) = f(X) — w(X)
A o ! dy + oqyzy
e G 2l _ 0 " v | | —oaps 4 sz 4 dany
Where, f(X) = o 0 v(X) = Y s
Is 0 iy —yoz + Bz 4 7 1Y

Hence x > 0. Now on taking equation 2 of system 1.1 and 3.1 one get

Now the Matrices F(X) and V(X) can be defined as

dy B .‘J:'f i j)y Bz ar
; F(X)=| 3 A ViX)= |2 =
e . . — 1 ah % o e
Dy = ylpr —d — ayr), o \d 2o ah o G
§ Then one get,
© ; LT . o 0D itz 0 0
Dy Z oy —d — g7 }{ = {}]l'- 5 00 0 g o i iy 0
| P = V= | e mstd o
- - \ o oo o7 0 —ay  dy 0
= —Taly 000 0 oy 0 0 ot 28+ my

To obtain the eigenvalues of pest extinction equilibrium point Ey(21.0,0,0), the equa-
tion [FV=' — M| = 0 has to be salved, A is the eigenvalue 1 is the identity matrix
FV -1 is the next generation matrix for model (3.4). Ay, A2, A3 and Ay can be computed

as M 0,A = 0A =0 and Ay = e The spectral radius of matrix F.V-! is
where 1,=d+a;t, Hence plFV) = max (X)), i-1,2,34.
By theorem 3 in [16] the basic reproduction number of model (1.1) is Bp = 252, O

¥ = i [—Tgfﬁ;'l.

= y =,
7= Steady state points

¢ The steady state point Eq (0, 0, 0, 0) always present.

Now considering the equation 3 of system of equation 1.1 one get * The steady state point E; (yo/Bo, 0, 0, 0) is present.
¢ Biological enemy free equilibrium point E; (d/v,, 1/v1 (yo—Bod/v2), O,
5 0) is exist only when the basic reproduction number Ro>1.
ez = oayza — gz — dyoy,

4. The coexisting equilibrinm point Ey(x', 3, 2{. z4) exist only when € holds. Whe
ey e v on g T 2,

—= [‘”‘:i + “I| ]I“- l{ Sy ["} ] Oyt arptiatey = Sayydaoeg + oy dady + dfigevgag. and here
= —ryzwhere, 7y = g +

o e w 5 o & yeiedzdy — dyogas),

1 = “II':I-E.I'F'I I{ T'ir TI- pdzdy — dfgoge).
= z; =

Again from equation 4 of system of equation 1.1 one get Local stablhtv analYSlS

The fundamental matrix for the given system of equation (1.1)

AGBIR Vol.41 No.4 2025 3
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o = 2280 —my - 0 0
A =) = Yol ot — d — vy Zo 0 —ay
S 82, 2) = 1] aza —g — iy oy

0 0 Oy —ds

The equilibrium point Eq (0, 0, 0, 0) of system (1.1) is unstable saddle point.

Proof. The Jacobian matrix for equilibrium point E is

w0 0 0
0 —d 0 o
J(0,0,0,0) = 00 —as—dy 0
0 0 1] —dy
The eigen values of the system ave Ay = 49, Ae = —d, Ay = —ovy — dy, There for e Jarg(A)| =
0 < dr/2 where, 0 < § < 1 hence hy virtue of [21] E;, is unstable saddle point. O

The equilibrium point E{ (yo/Bo, 0, 0, 0) is locally a symptotically stable,
when the basic reproduction number Rp<1

J(32.0,0.0) =

—ag—d; 0
0 0 g —dy
The eigenvalues for the equilibrium point By are Ay = —7yp, A =

dy, Ay = —dy. The argument of the eigenvalues are |arg(M)| = 7 > |ar, (,r{ Ml =7 =
larg(As)| = m > ﬁ; anly when Bq < 1, and |arg(A)| = 7 > . Hence by the virtue of [21]

the equilibrinm point £ is locally asymptotically stable [m}

Proof. The Jacobian matr
—

0

J(2,0,0,0) =
57 —an—dy D

0 0 oy —dy
The eigenvalues for the equilibrinm point Ey are Xy = —9p, 0 = —d + 4% Ay = —ag —

dy, Ay = —da. The argnment of the eigenvalues are |arg(M)| = 7 > 5, |arg(Xy)| = 7 > o

arg(As)] = 7 > % only when By < 1, and |arg{\)| = 7 > &. Hence by the virtue of [21
G 2 X g 2 ¢

the equilibrivm point E; is locally asvmptotically stable. O

Theorem 3.6. The bislogical enemy free equilibrivm point E.
then is asympiotieally stable when C) holds.C| : 0oy <

Lo — 24),0,0) if exists

vy ey + Yo elydy + dByoaryy.

Proof. The Jacobian matrix for E, is
Y
7’)’0 Y 0 0

0 Le_g 0 0
2.0,0,0 fo
(’j” ) 0 0 = d] 0
0 0 (4%} *dz
The eigenvalues for the equilibrium point Ey are Ay = —vp, Ay = 7(1 + R\ = 703 -

dy, Ay = —dy. The argument of the eigenvalues are |arg(\)| = 7 > &7 \arq()\z)\ =r>&
arg(As)] = 7 > % only when Rq < 1, and |arg(Ay)| = 7 > 2 1— Heure by the virtue of [21]
the equilibrium pomt E, is locally asymptotically stable. 0

Theorem 3.6. The biolagical Pmmy free equilibrium point EQ(—. —](”m - ‘j‘“l) 0,0) if exists
then is asymptotically stable when Cy holds.Cy: yaypoas < yo mima +7 ,1(12(11 + dByasag.

Proof. The Jacobian matrix for Ej is

_dBo —dn 0 0
2 72
0 0 —a ('Tﬂ e Mn)
J(L — &d).0,0)= i 2
(£, (7% - £5,0,0) = 0 —an—dy B i
0 0 (g —d,

The Eigen equation for the equilibrium point £, is {\* + '[J“A + d(v — “U" }{)\2 + (ds +

dy + ag)h + dy(dy + o) — 2R ‘1'5“““"} = 0 The elgenvalue@ for The Jacobian ma-
trix have negative real part v\hen arcnrdmo to Routh-Hurwitz criterion € holds. Then

s

larg(A)| =7 > L L larg(e)| =7 > &, |arg(Mg)] = 7 > "— and |arg(\y)| =7 > "—.

Theorem 3.7. The coexisting equilibrium point Ey(2',y', 2. 2}) if exist then is asymptoti-
cally stable when Cy Holds.

Proof. The Jacobian matrix for the equilibrium point € is

Y0 — 22'Fo — my' ~ne' 0 0
_ Yy’ Yo' —d — a2z 0 —ayy
- 0 Qgzh —az—d; oy
0 0 az —dy

The Eigen-Equation for this Jacobian Matrix is
A+ MOP + MpAZ + Mah + My = 0, (3.5)

Where, M; = By’ + dy +dy + a5, My = 3,7,2'y + (dy + dy + a) B’
Mz = aranagy’zh + 11y02’y (do + di + ag), M,

and &' m["nﬂzﬂi dyag — ndady ],y e
/
B = mmum_ s [12700003 — Yo71doas — Yamidady — dfgases],

The equilibrium point Ey will be stable according to [21] only when the eigenvalues of
(3.5)have negative real parts, according to the Routh-Hurwitz eriteria the eigen equation
(3.5) has eigen values as negative real parts if the following condition is satisfied.
o ( MMy — My >0,

Mi(MaM; — M.i) ME> 0.

) =71 > & T larg(he)| = 7 >h 2 larg(As)] = 7 > & and |arg(M)| = 7 >
2 | 0
3.6. Global Stability
Theorem 3.8. The Pest extinction equilibrium point El("” 0,0,0) is globally asymptotically

stable if Ry < 1.

Proof. Now consider the Lyapunov function as follows:

. ) b 3+
Ao, 2) = 2o =2 = Rln(F)) +y + oy + 2,
By virtue of lemma (3.1)
Dofa,y, ) < B(1-

Jo

< :—f( —m)(“/o—ﬂol/‘ _7114?/)+y(JQJI_d‘“l«?)‘\'@((12952_0(}191_(1111)
dQSQ)
< —grle— 2P +dRa - Dy - 25T

Hence ¢ ‘D) < 0 when Ry < 1 fmm Lenma (4.6) in [31] the pest extinction equilibrium
point is globally asymptotically stable. O

of [30] the 4 order derivative of é(z, y, 2, z2) is

) b 1 end apastdi) e s,

“)D p+° Doy + SeDPy 4 o lepiz,

o fagtdi) N
la,‘m . (()1"'1_

Numerical analysis

In this section we have developed some graphs of the system (1.1) by using

Matlab code FDE12. We will use the values of the parameter as mentioned
in the Table 1 and initial value of the population is taken as [x(0), y(0), z;

0), (0))=[1, 1, 1, 1].

TABLE 1

A table for the various values of parameters used in system (1.1)

Para.| Coll Col2 Col3 Col4
Yo 0.9 0.9 0.9 0.3
Vi 0.1 0.1 0.1 0.1
Va 0.02 0.2 0.2 0.2
i 0.3 0.3 0.3 0.3
(o} 0.1 0.1 0.25 0.1
[o§} 0.25 0.25 0.25 0.25
Bo 0.1 0.1 0.1 0.1
d 0.2 0.2 0.2 0.2
di 0.1 0.1 0.2 0.1

AGBIR Vol.41 No.4 2025
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d: 0.2 0.2

0.1 0.2

Pest extinction point

Taking the values of parameters as defined in column-1 of Table 1, one can
observe that the progress rate of pest population (y2=0.02) is very less than
the other cases and the basic reproduction number Ro=0.9<1 then we get
the pest extinction equilibrium point which is shown in following graphs
(Figures 1 and 2).

Pest Extinction Equilibrium Point

Piant
BT Pest
Imemature Matural Enemy
Mature MNatural Ensmy

oo so0 Too 800 200

Q
2
o
[
=}
0
w
B
Q
&
o
=]
=

Figure 1) Time series graph of pest extinction equilibrium point Ey (9, 0, 0, 0) for
0=1, this graph shows that when there is no pest and biological enemy then plant
population is higher than the other cases as discussed in this paper

Pest Extinction Equilibrium Point Pest Extinction Equilibrium Point

e
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| L
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Figure 2) Set of point of state space for the system 1.1, for the different values of
fractional parameter 0=1, 0.97, 0.94, 0.91 as defined in Table 1

Cosxisting Equilibrium Poin

e

et P v E ey
BTy iRt A Erveerey

i o0 00 w00 SO GO0 0 (= o 100N

Figure 3) Time series graph of coexisting equilibrium point E; (6.2, 2.8, 2.7733,
3.4667) for 0=1, and one can observe from the graph that the plant population in
presence of pest and biological enemy is higher than the situation when there are
no biological enemies and is lesser to the situation when there is no pest and
biological enemy both

Coexisting Equilibrium Point Coexisting Equilibrium Point

e
s-097)

=031

Plant Population
Pest Population

100 200 300 400 500 600 70D BOD 90D 100D 0 100 200 300 400 500 800 70D 800 900 1000
t t

Natural Enemy free Equilibrium Point Coexisting Equilibrium Point
ba1 i dut
s-0s7 e

08 i34 | 3 i
5031 ‘ 081 |

Immature Natural Enemy
Mature Natural Enemy

Py — P Tt P i
0 100 200 300 400 500 €00 700 800 900 1000 0 100 200 300 400 500 €00 700 B0 900 1000
t t

Figure 4) Set of point of state space for the system 1.1, for coexisting equilibrium
for the different values of fractional parameter 6=1, 0.97, 0.94, 0.91 as defined
in column-2 of Table 1

Coexisting point

One can observe from column-2 of Table 1 that when we take y2=0.2 then
we get the R0=9>1 which shows the existence of coexisting equilibrium
point (Figures 3-5).
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Figure 5) Portrait diagram of the model for §=0.97 with reference to the column-2
of Table 1
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Unstable coexisting point

One can observe from column-3 of Table 1 that if one takes the mortality
rate (d1=0.2) of immature biological enemy higher than the mortality rate
(d2=0.1) of mature biological enemy and the progress rate of immature
biological enemy (02=0.25) then the basic reproduction number is Rg=9>1

the coexisting equilibrium point becomes unstable (Figures 6-8).

Unstable Coexisting Point

AT “""\“"l"|""||'“|'||'i{‘i'n"‘|'||'“'u'||"|f
; H"I' |‘| |‘Ml '\ ‘{' t;nl"mm
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\ L VAR VS LAV AT RN AN LVRLECAVRLRVEVELAVEY |
(4] 100 2000 300 400 500 600 700 8O0 900 1000
t

Table 1

Figure 6) Time series graph of unstable coexisting equilibrium point E; (8.9724,
0.0228, 0.2802, 5.0282) for 6=1 and other parameters as defined in column-3 of
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0.91 and other parameters as defined in column-3 of Table 1

Figure 7) Set of point of state space for the system 1.1, for unstable coexisting
equilibrium for the different values of fractional parameter =1, 0.97, 0.94,
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Figure 8) Portrait diagram of the model (1.1) for §=0.97 with reference to the
column-3 of Table 1

Biological enemy free point

One can observe from the column-4 of Table 1 that when the growth rate
plants (y0=0.3) is less than the other cases then Ro=3>1 this shows that there
is an existence of pest population but one gets the biological enemy free

equilibrium state as shown in the following graphs (Figure 9).
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Figure 9) Time series graph of biological enemy free equilibrium point E, (1, 2,
0, 0) for 6=1

One can see from the graph that the plant population in presence of pest
and without biological enemy is lesser than all the cases we discussed in this
paper. Hence if there is exist pest in plant than there should by biological

enemy for the protection and growth of plants (Figure 10).
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Figure 10) Set of point of state space for the system 1.1, for biological enemy
free equilibrium for the different values of fractional parameter 8=1, 0.97, 0.94,
0.91 as defined in column-4 of Table 1

CONCLUSION

In this paper, we presented a result on the existence and uniqueness, of the
solution as well as (3.2) on the non-negativity and uniform boundedness for
a class of systems under the control of (1.1). The stability of the equilibrium
points has been discussed. According to the discussion in (3.4), the
equilibrium point E; is unstable saddle point, the equilibrium point E; is
locally and globally asymptotically stable when the condition Ro<1 holds as
discussed in 3.5 and 3.8, the equilibrium point E; is asymptotically stable
only when the condition C; holds as discussed in 3.6 and the equilibrium
point Ej is also locally and globally asymptotically stable If C; holds as
discussed in 3.7. In the end, equilibrium points are numerically analysed as
explained in (4). From the numerical simulation, it can be seen that
fractional order changes the convergence speed of the solution of fractional
differential system and it is also seen when fractional order 8 increases

AGBIR Vol.41 No.4 2025 (MRPFT)

(0<8<1) the convergence speed of solution is also increased which shows the
memory term of fractional order.

DATA AVAILABILITY

The labelled dataset used to support the findings of this study is available
from the corresponding author on request.
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