
A fractional differential approach to plant pest mature and immature
biological enemy

Anil Kumar Shukla1*, Joydip Dhar2, Rajshree Mishra3

Shukla AK, Dhar J, Mishra R. A fractional differential approach to plant 
pest mature and immature biological enemy. AGBIR.2025;41(2):1-7.

The issue of plant pests is a critical area of investigation at present. While 
numerous chemical solutions are available, their toxic effects make the use 
of natural enemies a preferable alternative. This article introduces a 
fractional calculus approach to model the dynamics between mature and 
immature natural enemies of plant pests. The study discusses the existence and

uniqueness of the solution, the non-negativity of the solution and both 
global and local stability of the equilibrium point. Given that memory is 
intrinsic to biological systems, the proposed technique is advantageous due 
to the memory effect of fractional derivatives, leading to more accurate 
solutions. Simulations with different fractional parameters generate optimal 
solutions.
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INTRODUCTION

In the present era, the plant-pest problem is a significant global issue.

Discussions about plant pests date back to the early 18th century, with
George and Watt addressing the pests and delights of tea plants in 1898 and
Hilderic Friend studying worms as plant pests in 1911 [1,2]. Over time,
many authors have proposed solutions to plant-pest problems, including
chemical solutions, biological enemies and pest infections.

Numerous chemical solutions have been explored. For instance, Choo Ho,
et al. discussed the effects of some chemical pesticides in 1998 and Hajji et
al. examined nanobased pesticides in 2021 [3,4]. However, chemical
solutions can sometimes be harmful to both plants and humans. BN Aloo
et al. highlighted the adverse effects of agrochemicals on beneficial plant
rhizobacteria in agricultural systems in 2021 [5].

Biological enemies are a preferable solution to plant-pest problems. The
study of biological control began in 1888 when the Vedalia bug was
introduced in California from Australia [6]. Paul DeBach and David Rosen’s
1991 book on biological control explains how natural enemies can
biologically control pest populations [7]. In 1995, Thomas et al. published
research on the biological control of grasshoppers by fungi [8].

Mathematical modeling of plant-pest interactions has gained traction in
recent years. Haith et al. studied models for pest management in the analysis
of potato integration in 1987 [9]. Maiti et al. developed a mathematical
model on the usefulness of biocontrol for pests in tea in 2008 [10]. Kumar
et al. investigated a mathematical model on plant pests and natural enemies
with twin gestation delays as a biological control technique in 2018. Many
researchers have attempted to construct robust models by addressing various
real-world challenges to mitigate flaws in predator-prey relationship models.

Currently, many plant-pest models are developed using ordinary differential
equations with various parameters, including delay, harvesting, etc. The
fractional differentiation approach for plant-pest models is a new research
area. Fractional differentiation introduces a memory effect, which is a
valuable criterion for solving plant-pest problems. Bhattacharya et al.
studied a fractional differential approach with memory for the paradox of
enrichment in 2013. Samanta et al. developed a fractional-order prey-
predator model incorporating prey in 2018 and Moustafa et al. wrote a
paper on a fractional-order prey-predator model in 2019.

Several definitions of fractional differential equations exist, including
Grunwald-Letnikov, Riemann-Liouville and Caputo. Among these, Caputo’s
fractional derivative is the most popular and well-developed, with initial
conditions similar to those for integerorder derivatives.

Recently, researchers have increasingly focused on fractional differentiation
due to its memory terms and properties. Caputo fractional derivatives have
gained interest for their applications in modeling pandemics like
COVID-19, electrical engineering, biochemistry (e.g., modeling proteins and
polymers), acoustics, material modeling, rheology and mechanical systems.
The fundamental properties and applications of fractional derivatives can be
found in the works. Given that memory is inherent in biological systems,
fractional derivatives are particularly relevant. This is why I am studying a
fractional-order plant-pest model involving immature and mature biological
enemies. For fractional differential based model one can cite the following
papers.

In this research paper, we discussed a fractional-order differential model for
plant pest mature and immature biological enemies.

MATERIALS AND METHODS

Using a fractional derivative, we examined the food chain dynamics of plant
pests with their immature and mature biological enemies in this work. In
this case, we presented the following mathematical approach:

• Plant (x(t)), Pest (y(t)), premature biological enemy (z1(t)) and mature
biological enemy (z2(t)) are the four categories of species.

• With an inherent progress rate of γ0 and a carrying capacity of γ0/β0,
the plants grow logistically. The per capita progress rate of the plants is x
(γ0−β0x) when there is no pest population.

• Pests harvest plants and the holing type-1 functional response is the
result of this harvesting.

• The pest is cropped by a mature biological enemy with a holing type-1
functional reaction.

• Let γ1 represent the cropping rates of plants by pests, γ2 represent the
progress rate of pests by plants, α1 represent the cropping rate of pests
by mature biological enemies and α2 represent the progress rate of
immature biological enemies by mature biological enemies and pests.
The mortality rates of pest, immature biological enemy, and mature
biological enemy are d, d1 and d2, respectively. The pace at which
immature biological enemies evolve into mature biological enemies is α3
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 and the rate at which mature biological enemies proceed through
immature biological enemies is α3.

Plant pest premature-mature biological enemy

With initial conditions: x (0)>0, y (0)>0, z1(0)>0 and z2(0)>0.

The following is a summary of our work: We reviewed some basic fractional 
derivative definitions in the preliminaries section. The existence and 
uniqueness results for the system (1.1) are derived in the main results 
section. For the system (1.1), the equilibrium points and their stability 
analysis are also performed. Numerical analysis is performed at the end of 
this work using matlab code fde12 for fractional differential equations.

Preliminaries

We will review certain terminology and basic fractional calculus results in 
this section, this will be used for the duration of the research.

Definition: The fractional integral of a function ϕ with order δ>0 lower 
bound zero is defined as follows.

Definition: The Riemann-Liouville fractional derivative of a function ϕ
with the lower limit zero of order δ>0 is given by

Definition: The caputo fractional derivative of a function ϕ ∈ Cn ([0,∞))
with the lower limit zero of order δ>0 is given by

Consider the system

with the initial condition: f(t0)=ft0, where δ ∈ (0,1], g: Γ × [t0, ∞) → Rn,Γ ⊂
Rn, if g(f,t) satisfies the local Lipschitz condition with respect to f, then there 
exist a unique solution of (2.1) on Γ × [t0, ∞).

RESULTS AND DISCUSSION

Existence and uniqueness

As a result, ρ(X) satisfies the Lipschitz condition with regard to X and hence 
there exists a unique solution X(t) for system.

Non-negativity and uniform boundedness

The solutions of the system which (1.1) starts in R4
+ and non-negative and 

uniform bounded. Proof. Applied the results used in. Suppose

Now applying the comparison theorem for fractional order, one reach

Where Eδ and Eδ, δ+1 are mittag leffler function. Now by taking t → ∞ one
get

Hence, the solutions of system of fractional differential equation begins in 
R4

+ are uniformly bounded with in the region χ1 defined as
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Now we will prove that the solution of fraction order system is non-negative.
Consider the first equation of system of equation.

From equation 3.1 and 3.2 and considering ω → 0 one get 

where τ1=(γ0−β0τ−γ1τ), from comparison theorem of one get

Hence x ≥ 0. Now on taking equation 2 of system 1.1 and 3.1 one get

where τ2=d+α1τ, Hence

Now considering the equation 3 of system of equation 1.1 one get

Again from equation 4 of system of equation 1.1 one get

Hence the system of equation 1.1 have non-negative solutions.

Basic reproduction number

For finding equilibrium points and their stability we will introduce basic
reproduction with the help of pest free equilibrium point of system of
equation.

Theorem: The basic reproduction number R0 for the system of equation
(1.1) is given by R0=γ2γ0/dβ0.

Proof: Rewriting the given system of equation (1.1)

Steady state points

• The steady state point E0 (0, 0, 0, 0) always present.
• The steady state point E1 (γ0/β0, 0, 0, 0) is present.
• Biological enemy free equilibrium point E2 (d/γ2 , 1/γ1 (γ0−β0d/γ2), 0,

0) is exist only when the basic reproduction number R0>1.

Local stability analysis

The fundamental matrix for the given system of equation (1.1)
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The equilibrium point E0 (0, 0, 0, 0) of system (1.1) is unstable saddle point.

Proof. The Jacobian matrix for equilibrium point E0 is

The equilibrium point E1 (γ0/β0, 0, 0, 0) is locally a symptotically stable,
when the basic reproduction number R0<1

Numerical analysis

In this section we have developed some graphs of the system (1.1) by using 
Matlab code FDE12. We will use the values of the parameter as mentioned 
in the Table 1 and initial value of the population is taken as [x(0), y(0), z1 
(0), z2(0)]=[1, 1, 1, 1].

Para.↓ Coll Col2 Col3 Col4

γo 0.9 0.9 0.9 0.3

γ1 0.1 0.1 0.1 0.1

γ2 0.02 0.2 0.2 0.2

α₁ 0.3 0.3 0.3 0.3

α₂ 0.1 0.1 0.25 0.1

α₃ 0.25 0.25 0.25 0.25

β₀ 0.1 0.1 0.1 0.1

d 0.2 0.2 0.2 0.2

d₁ 0.1 0.1 0.2 0.1

Shukla AK, et al.

4 AGBIR Vol.41 No.4 2025

TABLE 1
A table for the various values of parameters used in system (1.1)



d₂ 0.2 0.2 0.1 0.2

Pest extinction point

Taking the values of parameters as defined in column-1 of Table 1, one can 
observe that the progress rate of pest population (γ2=0.02) is very less than 
the other cases and the basic reproduction number R0=0.9<1 then we get 
the pest extinction equilibrium point which is shown in following graphs 
(Figures 1 and 2).

Figure 1) Time series graph of pest extinction equilibrium point E0 (9, 0, 0, 0) for 
δ=1, this graph shows that when there is no pest and biological enemy then plant 
population is higher than the other cases as discussed in this paper

Figure 2) Set of point of state space for the system 1.1, for the different values of
fractional parameter δ=1, 0.97, 0.94, 0.91 as defined in Table 1

Coexisting point

One can observe from column-2 of Table 1 that when we take γ2=0.2 then
we get the R0=9>1 which shows the existence of coexisting equilibrium
point (Figures 3-5).

Figure 3) Time series graph of coexisting equilibrium point E3 (6.2, 2.8, 2.7733, 
3.4667) for δ=1, and one can observe from the graph that the plant population in 
presence of pest and biological enemy is higher than the situation when there are 
no biological enemies and is lesser to the situation when there is no pest and 
biological enemy both

Figure 4) Set of point of state space for the system 1.1, for coexisting equilibrium 
for the different values of fractional parameter δ=1, 0.97, 0.94, 0.91 as defined 
in column-2 of Table 1
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Figure 5) Portrait diagram of the model for δ=0.97 with reference to the column-2 
of Table 1



Unstable coexisting point

One can observe from column-3 of Table 1 that if one takes the mortality 
rate (d1=0.2) of immature biological enemy higher than the mortality rate 
(d2=0.1) of mature biological enemy and the progress rate of immature 
biological enemy (α2=0.25) then the basic reproduction number is R0=9>1 
the coexisting equilibrium point becomes unstable (Figures 6-8).

Figure 6) Time series graph of unstable coexisting equilibrium point E3 (8.9724, 
0.0228, 0.2802, 5.0282) for δ=1 and other parameters as defined in column-3 of 
Table 1

Figure 7) Set of point of state space for the system 1.1, for unstable coexisting 
equilibrium for the different values of fractional parameter δ=1, 0.97, 0.94, 
0.91 and other parameters as defined in column-3 of Table 1

Biological enemy free point

One can observe from the column-4 of Table 1 that when the growth rate 
plants (γ0=0.3) is less than the other cases then R0=3>1 this shows that there 
is an existence of pest population but one gets the biological enemy free 
equilibrium state as shown in the following graphs (Figure 9).

One can see from the graph that the plant population in presence of pest 
and without biological enemy is lesser than all the cases we discussed in this 
paper. Hence if there is exist pest in plant than there should by biological 
enemy for the protection and growth of plants (Figure 10).
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Figure 8) Portrait diagram of the model (1.1) for δ=0.97 with reference to the 
column-3 of Table 1

Figure 9) Time series graph of biological enemy free equilibrium point E2 (1, 2, 
0, 0) for δ=1



CONCLUSION

In this paper, we presented a result on the existence and uniqueness, of the 
solution as well as (3.2) on the non-negativity and uniform boundedness for 
a class of systems under the control of (1.1). The stability of the equilibrium 
points has been discussed. According to the discussion in (3.4), the 
equilibrium point E0 is unstable saddle point, the equilibrium point E1 is 
locally and globally asymptotically stable when the condition R0<1 holds as 
discussed in 3.5 and 3.8, the equilibrium point E2 is asymptotically stable 
only when the condition C1 holds as discussed in 3.6 and the equilibrium 
point E3 is also locally and globally asymptotically stable If C2 holds as 
discussed in 3.7. In the end, equilibrium points are numerically analysed as 
explained in (4). From the numerical simulation, it can be seen that 
fractional order changes the convergence speed of the solution of fractional 
differential system and it is also seen when fractional order δ  increases

(0<δ<1) the convergence speed of solution is also increased which shows the
memory term of fractional order.

DATA AVAILABILITY

The labelled dataset used to support the findings of this study is available
from the corresponding author on request.
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Figure 10) Set of point of state space for the system 1.1, for biological enemy 
free equilibrium for the different values of fractional parameter δ=1, 0.97, 0.94, 
0.91 as defined in column-4 of Table 1
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